First Harvestman Record for the Juan Fernández Archipelago, Chile, with Morphological Notes on Acropsopilio chilensis (Opiliones: Caddidae: Acroposopilioninae)

ABEL PÉREZ-GONZÁLEZ1,4, MARTÍN J. RAMÍREZ1, EDUARDO M. SOTO2 & JAIME PIZARRO-ARAYA3

1División Aracnología, Museo Argentino de Ciencias Naturales - CONICET, Av. Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina
2Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
3Laboratorio de Entomología Ecológica, Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena, Chile
4Corresponding author. E-mail: abelaracno@gmail.com

Abstract

Acropsopilio chilensis Silvestri, 1904 (Eupnoi: Caddidae: Acroposopilioninae), is recorded for Robinson Crusoe Island, Chile. This is the first harvestman species recorded for the Juan Fernández Archipelago and also the first extra-continental record for this species. During the comparison with continental co-specific specimens, some previously unknown, remarkable morphological characteristics were discovered, among them: the absence of ovipositor seminal receptacles and tracheal system, small and probably imperforate spiracles and the presence of a subdistal spiny structure, maybe a stylus, in the major branch of the penis.

Key words: Opiliones, Eupnoi, genital morphology, respiratory system, volcanic island, biodiversity

Introduction

The Juan Fernández Archipelago is one of the priority sites for nature conservation worldwide, and was declared a Chilean National Park in 1935 and Biosphere Reserve in 1977. Because of its isolation and recent volcanic origin, this archipelago of the Nazca Plate represents an exceptional laboratory for understanding evolutionary and biogeographical processes modeling the flora and fauna of isolated islands and contributions that increase the knowledge of its biota are highly valuable.

The volcanic origin of the archipelago was dated as ranging between 1–4 mya. (Stuessy et al. 1984), and its terrestrial biota is a mosaic resulting from spatially and historically diverse dispersal events mainly originating from South and Central America, Polynesia and New Zealand (Danton 2004). Some groups exhibit a considerably high degree of endemism, such as vascular plants (60–70%, Hoffman & Marticorena 1987; Stuessy et al. 1984) and arthropods (60–70%, Peña 1987). Harvestmen have not been recorded from the archipelago up to now. The goal of the present contribution is to report the occurrence of a representative of this order on the archipelago as well as to clarify some obscure morphological aspects of the recorded species.

Material and methods

The newly recorded specimens were collected on the Robinson Crusoe Island located 670 km west of continental Chile in the Pacific Ocean (Fig. 1). For comparison continental specimens from the arachnological collection of the Argentinean Museum of Natural Sciences (MACN-Ar) were also studied. Field collections were conducted from February 16 to February 20, 2011, using pitfall traps. The traps consisted of two plastic cups of 7.4 × 10.2 cm and

Accepted by A. Schonhofer: 8 Jul. 2014; published: 15 Aug. 2014

347
7.6 × 12.0 cm in size placed inside each other, so the smaller was easy to remove. This inner cup was filled to one third of its capacity with a mixture of water (80%), ethanol (10%) and laundry detergent (10%). The traps operated for four days. All collected specimens were deposited at the MACN-Ar.

FIGURE 1. Map showing the collection sites of Acropsopilio chilensis on Robinson Crusoe Island. Solid circle represents the collection locality with environment dominated by Myrceugenia fernandeziana (Myrtaceae) and solid square the collection locality with environment dominated by an association between Thysopteris elegans (Thysopteridaceae) and a Dicksonia berteroana (Dicksoniaceae).

For investigation female ovipositors were temporarily mounted in clove oil, and male genitalia in glycerol. To search for expansible areas in the male genitalia, the penis was immersed in hot lactic acid for 10 minutes and then transferred to distilled water (Acosta et al. 2007). The genitalia were drawn using a camera lucida attached to an Olympus BH-2 compound microscope. Photomicrographs were made with a Nikon DXM1200 digital camera and stereomicroscope preparations with a Leica DFC 290 digital camera attached to a Leica M165C stereomicroscope, and the focal planes stacked with Helicon Focus 3.10.3 and 4.62 Pro (www.heliconsoft.com).
In order to check for the existence of a tracheal system, one specimen was dissected and digested in hot 10% KOH solution, then mounted and observed under a scanning electron microscope (SEM). For SEM preparation the specimens were dehydrated using increasing concentrations of ethanol (80%, 90%, 95%, 100%), and finally critical-point dried. They were mounted on adhesive copper tape (Electron Microscopy Sciences, EMS 77802) affixed to a stub. Prior to examination under high vacuum with a FEI XL30 TMP, surfaces were sputter-coated with Au-Pd.

Characterization of the collection locality: The Robinson Crusoe Island has a Mediterranean-type climate moderated by maritime influences, with an average annual temperature of 15°C. Temperatures average 18.7°C in the summer and 7.3°C in the winter with extremes of 25°C in February and 3°C in August (Juan Fernández Archipelago; Hajek & Espinoza 1987). Precipitation is frontal during the winter and convective in the summer, with rain about every three days following accumulation of sufficient humidity in summer. The annual precipitation is 1041.5 mm with 75.8% of the total precipitation between April and October. The highest rainfall recorded over a calendar month occurs in June (173 mm) and the lowest in January (28 mm) (Novoa & Villaseca 1989). The harvestmen were collected in two different habitats: one dominated by Myrceugenia fernandeziana (Hooker & Arnott) Johow (Myrtaceae) (endemic upper montane forest), also including populations of Drimys confertifolia Phil (Winteraceae) and a few specimens of Gunnera bracteata Steud. ex Benn (Gunneraceae), a species that occurs at low altitudes in forest openings and in the most humid part of the Plazoleta el Yunque; and a second one dominated by a community of arboreal ferns, an association between Thyrsopteris elegans (Thyrsopteridaceae) and Dicksonia berteroana (Colla) Hook. (Dicksoniaceae)), including Drimys confertifolia and Myrceugenia fernandeziana specimens (Greimler et al. 2002). All the specimens from Robinson Crusoe Island were collected in forested areas, but no significant collection effort was made in urbanized areas (Fig. 1).

Results and discussion

Only two pitfall traps included a total of three opilionid specimens of a single species. All specimens were congruent in external and ovipositor morphology with Acropsopilio chilensis Silvestri, 1904 (Eupnoi: Caddidae: Acropsopilioninae). We compared with continental specimens identified by Maury et al. (1996) as A. chilensis, collected in Cerro Ñielol [38.716776S 72.585510W], less than 30 km from the type locality (Pitrufquén) in Chile. This material had already been compared with the holotype of A. chilensis (Capocasale 2004b), confirming Maury’s identification (Capocasale 2004b). Our material hence represents the first harvestmen species recorded for the Juan Fernández Archipelago.

The Robinson Crusoe specimens differ only slightly from the continental ones. External coloration is darker and one additional ventral minor setiferous tubercle on the femur of the pedipalp (Fig. 2) is present, a characteristic that was also reported in the specimen illustrated by Canals (1932) (sub Acropsopilio chilensis var. Ogloblini [Sic.] and Capocasale (2004a: fig. 1).

The specimens from Robinson Crusoe have a small prong on their female genitalia, in one of the major branches of the ovipositor sensillum (Fig. 3a). This small prong was also observed in specimens of Acropsopilio chilensis from Arroyo Las Monjas, near Glaciar Perito Moreno, Argentina (Fig. 3b) but its absent in a Cerro Ñielol-female from near the type locality in continental Chile (Fig. 3c). All these small differences are herein interpreted as intraspecific variations.
All the specimens collected were females. Parthenogenesis was suggested as one of the probable causes for the paucity of collected males in some species of Caddidae (Shear 1975), including several Acropsopilioninae such as *Acropsopilio boopsis* (Crosby), *A. chomulae* (Goodnight & Goodnight), *A. neozealandiae* (Forster) and *A. chilensis* (Shear 1996, 2004; McCartney et al. 2007). Up to now, of 128 specimens reported of *A. chilensis* (Silvestri 1904; Canals 1932; Ringuet 1959, 1962; Cekalovic 1974, 1985; Gruber 1974; Shear 1975; Kury 1994; Maury et al. 1996; Capocasale 2004a) only one male was detected (Capocasale 2004a), rendering parthenogenesis as most plausible explanation.

Acropsopilio chilensis seems to be widespread in South America (Maury et al. 1996: fig. 1). Most records are from the southern part of the Andean Region, but populations have been recorded in the Yungas (Argentina), Paranaense (Argentina, Brazil) and Serra do Mar (Brazil) regions (Maury et al. 1996), forming an interesting disjunct pattern. Outside these regions the species was also recorded from Punta Lara (Buenos Aires, Argentina) and Arequita (Lavalleja, Uruguay) (Ringuet 1962, Capocasale 2004a).
Despite this extensive geographical distribution, the Robison Crusoe Island specimens constitute the first extra-continental record for *Acropsopilio chilensis*. Transoceanic dispersal across the Pacific was recently suggested for zalmoxid harvestmen (Sharma & Giribet 2012). Natural processes or synanthropic introduction both could explain the presence of *A. chilensis* on Robinson Crusoe Island, but future molecular work may help estimating the age of colonization. The great morphological similarity seems to be one of the problems in *Acropsopilio* species recognition; McCartney *et al.* (2007) stated that *A. neozealandiae* appears to be virtually identical to *Acropsopilio australicus* Cantrell from Queensland but recognized that: "... further morphological and genetic research is clearly required to establish if these are indeed two species, or whether there is one widespread species that shows little variation between countries separated by several thousand kilometers of ocean...".

Acropsopilio boopis, *Caddo agilis* Banks and *Caddo pepperella* Shear, have been recorded as both eastern North American and Japanese populations (Suzuki 1976). Shultz and Regier (2009) recently proved divergence of these two *Caddo* species before acquiring their disjunct geographic distributions. These authors supported Suzuki’s (1976) habitat-fragmentation instead of Shear’s (1975, 1996, 2004) parallel evolution hypothesis to explain this biogeographic pattern (Shultz & Regier 2009).
Morphological remarks on *Acropsopilio chilensis*

Ovipositor.—The ovipositors of the Robinson Crusoe specimens exhibit apically two strong bifid sensilla (with or without small prong in major branches) seen as well in the ovipositors of specimens from continental Chile and Argentina (Figs. 3 and 4, also see Capocasale 2004a: fig. 3). Bifid sensilla are also present in *Acropsopilio australicus*, *A. chomulae* and *A. neozealandiae* but seem absent in *A. boopsis* and *Acropsopilio venezuelensis* González-Sponga, but the drawings provided for this latter species (González-Sponga 1995) are very schematic and therefore the ovipositor morphology of this species needs to be re-studied.

FIGURE 4. *Acropsopilio chilensis* MACN-Ar 31085 (Parque Cerro Ñielol, Chile). Dorsal view of ovipositor. GO: genital operculum; Se: sensillum; F: furca; Ov: ovipositor; AG: accessory gland; Ui: uterus internus.
Seminal receptacles were not detected in any of the ovipositors studied (either from Robison Crusoe Island or continental localities). They also lack in other species of Acropsopilio such as in *A. neozealandiae*, *A. boopsis* and *A. chomulae* (Forster, 1948; Suzuki, 1976 and Shear, 2004 respectively) and may be indicative for parthenogenesis (Shear 2004). We also observed a large uterus internus with accessory glands (Fig. 4).

Penis.—The penis of *Acropsopilio chilensis* was first studied by Capocasale (2004a), but only one view was illustrated (Capocasale 2004a, fig. 4). A reexamination of this structure (Figs. 5–7) allows us to describe additional features. The muscular-type penis is highly asymmetric with one major and one minor branch in the pars distalis.
FIGURE 6. *Acropsopilio chilensis* MACN-Ar 31087 (Camping "No me olvides", 7 km. E de Entrelagos, Chile). (a–b) penis (the drawings correspond with a penis clock-wise rotated in respect to Fig. 5). (a) penis not expanded. (b) penis expanded. IA: inflatable area; MiB: minor branch; S: stylus?. Scale bar = 100 µm.
FIGURE 7. Acropsopilio chilensis MACN-Ar 31087 (Camping "No me olvides", 7 km. E de Entrelagos, Chile). (a–b) penis not expanded; (a) the drawing correspond with an about 90° clock-wise rotated penis in respect to Fig. 6a; (b) the drawing correspond with an about 180° clock-wise rotated penis in respect to Fig. 6a. MaB: major branch; MiB: minor branch; S: stylus?. Scale bar = 100 µm.
The nine strong macrosetae are located basally in the pars distalis (Figs. 5–7) and sub-apically the major branch has a curved and spiny structure (maybe a stylus) (Figs. 5b, 6). The heavily sclerotized penis (Fig. 5a) thus forms a rigid structure and no evidence was seen of articulations among any compounded parts. The expanded penis shows only a small membranous-inflatable area at the base of the spiny structure (Fig. 6b, compare vs 6a); no other deformations were observed.

The only other penial morphology described within the genus was illustrated by Gonzalez-Sponga (1995) for *Acropsopilio venezuelensis*, but this apparently looks different from the *A. chilensis* penis. The drawing of Gonzalez-Sponga (1995) is very schematized and does not allow an objective comparison. The penial morphology of *A. chilensis* exhibits more affinities with the South African species of *Cadella* Hirst, sharing the asymmetry (major and minor branches), strong macrosetae and distal membranous areas, but lacking the pseudo-articulation between shaft/corpus penis and glans such as in *Caddella haddadi* Lotz, 2011 (see Lotz 2011, figs. 7–8).

Figure 8. *Acropsopilio chilensis* MACN-Ar 31085 (Parque Cerro Ñielol, Chile). (a) ventral view of left coxa IV showing small spiracle (arrow). (b) detail of spiracle. (c) detail of dorsal left side (digested) showing the absence of tracheal tubes. (d) dorsal view of dissected and digested specimen to show position of Fig. 8c. Cx3: coxa III; Cx4: coxa IV.

Remarks on genital terminology: Caddoid penes show two extreme types: the “Phalangiid-like” penis of *Caddo agilis* (see Gruber 1974) versus the shorter “spiny asymmetrical” of *Cadella* spp., *Austropsopilio* and *Acropsopilio* spp. For *Cadella capensis* Hirst (1925) stated the “distal part of penis strengthened by chitinous strips and furnished with spines”; his "distal part" is probably homologous with the *pars distalis* concept used in this article (see below for *pars distalis* definition). Kauri (1961) divided the penis of *C. africana* in three areas: corpus penis (basal part), Mittelstück (central part) and Eichel (glans) with a spirally coiled thin stylus called a "Muto". Shear (1975) described the penis of Acropsopilionae as: "Penis complex, composed of several plates and
articulated spines, bearing a membranous glans and sometimes subject to 180 degrees of torsion” and recognized for *C. capensis* “four basic plates, two proximal and two distal” with a distal membranous glans. Starega (1988) described the penis of *Caddella croeseri* Starega, 1988, as containing three asymmetric parts: basal part (truncus), middle part (glans) and distal part (a membranous stylus). Lotz (2011) recognizes a “mid region” (with spines) and a glans for *C. haddadi*. As we can see, the terminology used to describe male genital structures of the “spiny asymmetrical” type and in Caddidae is very heterogeneous. The standardization of terminology for male genital morphology in this group of harvestmen exceeds the goal of the present contribution and deserves a further detailed study. Here we follow the terminology used by Macias-Ordoñez et al. (2011), defining a *pars basalis* as corresponding to most of the long shaft called the *truncus*; and a *pars distalis* as corresponding to the distal end of the *truncus* and the terminal or subterminal glans.

Tracheal system.—The spiracle of *Acropsopilio chilensis* are very small and seem to be imperforated (Fig. 8a, b) as was observed in *A. chomulae* (Shear 2004) but scanning micrograph did not allow resolution of the deepest layer. Ventrally no tracheal tubes were observed (Fig. 8c, d).

Acknowledgments

The Corporación Nacional Forestal of Chile (CONAF) extended permits for collection in the Juan Fernández Archipelago. We thank Iván Leiva (Juan Fernández Archipelago National Park Administrator), Silvia Moreno, Paola González de Rodt, Masicimiliano Recabarre Green and Guillermo Araya Arredondo (CONAF, Juan Fernández Archipelago National Park), Mauricio Gana (Oficina Juan Fernández y Gestión; Ministerio del Interior y Seguridad Publica, Gobierno de Chile) for support in the field and for the logistics of the expedition to Juan Fernández. Luís Piacentini helped with the Nikon DXM1200 digital camera software. We thank A.B. Kury for providing valuable bibliography through his Omnipaper Project. We are indebted to W.A. Shear for reading and improving an earlier manuscript version and Dr. Jürgen Gruber for his detailed and constructive revision also we are indebted with A.L. Schönhofer for his excellent editorial work. Daniel N. Proud also assist with language corrections. This work was supported by grants FONCyT PICT 2007-1393 and 2011-1007, CONICET PIP 112–200801–03209, UBA UBACyT 01/1240 and DIULS PR13121-VACDDI001 (JPA).

References

http://dx.doi.org/10.1353/psc.2002.0022

Gruber, J. (1974) Bemerkungen zur Morphologie und systematischen Stellung von *Caddock, Acropsopilio* und verwandter

http://dx.doi.org/10.1080/03014220709510070

http://dx.doi.org/10.1080/03014220709510070

http://dx.doi.org/10.1098/rspb.2012.0675

http://dx.doi.org/10.1126/science.225.4657.49